Forumana.com, Forum, Forum Sitesi, Forumlar

Forum KayıtForum Kayıt ForumForum OyunlarOyunlar MesajlarMesajlar GruplarGruplar Üye GruplarıYönetim RadyoFM DinleRadyoFM TwitterTwitter FacebookFacebook İletişimİletişim
 


Forum Forumlar Forum Sitesi Forum Grup Forum Albüm Forumları Okudum
Go Back   Forumana.Com - Forum, Forumlar, Forum Sitesi Eğitim & Öğretim Liseliler Matematik- Geometri

Weibull Dağılımı

 Matematik- Geometri forumunda yer alan Weibull Dağılımı konusu, Weibull Dağılımı Weibull Dağılımı Weibull Dağılımı Olasılık kuramı ve istatistik bilim dallarında Weibull dağılımı (Waloddi Weibull anısına isimlendirilmiş) [1] ) bir sürekli olasılık dağılımı olup olasılık yoğunluk fonksiyonu şöyle ifade ...



Yeni Konu aç Cevapla
 
Seçenekler Stil
Alt 11-Kasım-2013, 14:55   #1 (permalink)
UYARI:
Kullanıcıların Profil Bilgileri Misafirlere Kapatılmıştır. Görmek için KAYIT olmalısınız.~
Standart Weibull Dağılımı

Weibull Dağılımı

Weibull Dağılımı
Olasılık kuramı ve istatistik bilim dallarında Weibull dağılımı (Waloddi Weibull anısına isimlendirilmiş) [1] ) bir sürekli olasılık dağılımı olup olasılık yoğunluk fonksiyonu şöyle ifade edilir:

Burada ve x < 0 için f(x; k, λ) = 0. k > 0 şekil parametresi ve λ > 0 ölçek parametresi olurlar.

Weibull dağılımı için yığmalı olasılık fonksiyonu bir gerilmiş üstel (stretched) fonksiyondur.
Yaşama, hayatta kalım ve yetmezlikle yıkım süreçlerini inceleyen verilerin analizi alanında Weibull dağılımı çok elastik olup kolayca değiştirilebildiği için çok kullanılmaktadır. Değişik parametre değerleri kullanılarak normal dağılım, üstel dağılım gibi çok popüler diğer istatistiksel dağılımların davranışların Weibull dağılımı kullanarak aynen taklid etme imkânı bulunmaktadır.

Eğer k = 3.4 ise, Weibull dağılımı normal dağılımına benzerlik gösterir. Eğer k = 1 ise o zaman Weibull dağılımı üstel dağılımına dönüşür.

Özellikler

Weibull dağılımı için ninci ham momenti şu ifadeyle verilmiştir:

€ Burada Γ bir Gamma fonksiyonu olur.

Weibull rassal değişkeni için beklenen değer ve standart sapma şöyle verilir:



ve



Çarpıklık şöyle verilir:



Fazla basıklık ifadesi şudur:



Burada Γi = Γ(1 + i / k). Fazla basıklık ifadesi şöyle de yazılabilir:



İstatistik kaynakları çok kere biraz değişik olan genelleştirilmiş 3-parametreli Weibull dağılımı bulunduğunu bildirmektedirler. Bu genelleştirilmis Weibull dağılımı için olasılık dağılım fonksiyonu şudur:

Burada ve f(x; k, λ, θ) = 0 eğer x < θ; k > 0 şekil parametresi, λ > 0 ölçek parametresi ve θ dağılım için konum parametresisir. Limitte θ=0, olduğu zaman bu ifade 2-parametreli değişime dönüşür.

2-parametreli Weibull dağılımı için yığmalı dağılım fonksiyonu şöyle verilmiştir:

eğer x ≥ 0, ve F(x; k; λ) = 0 eğer x < 0.

3-parametreli Weibull dağılımı için ise yığmalı dağılım fonksiyonu şudur:


Burada x ≥ θ, ve F(x; k, λ, θ) = 0f eger x < θ.

Kritik yetmezlik hızı h (veya tehlike hızı) şöyle verilmiştir:



Weibull dağılımı gösteren rassal değişir üretilmesi

(0, 1) aralığında bulunan bir tekdüze dağılımından elde edilmiş bir rassal değişir olarak U ele alınsın. O zaman şu

X=\lambda (-\ln(U))^{1/k}\,

parametreleri k ve λ olan bir Weibull dağılımı gösterir. Bu sonuç yığmalı dağılım fonksiyonunun şekilden hemen elde edilir. Ancak (0,1) aralığından rassal değişkenler üretilmekte iken ele geçirilmesi çok az olasılıklı olan 0 değeri bir şans eseri ele geçerse (bu değerin doğal logaritması sonsuz olacağı için) bu çekilimin bir kenara bırakılması ve yeni bir tane daha rassal sayı elde edilmesi gerekir.

İlişkili dağılımlar

Eger

X˜Weibull(k = 1,λ − 1)

ise,

X˜Exponential(λ)

ifadesi bir ustel dagilim olur.

Eger

X \sim \mathrm{Weibull}(k = 2, \sqrt{2} \beta)

ise

X˜Rayleigh(β)

bir Rayleigh dagilimi olur.

Eger

X˜Uniform(0,1)

ise

\lambda(-\ln(X))^{1/k}\,

bir Weibull dagılımı olur.

Ters Weibull dağılımı için olasılık dağılım fonksiyonu

f(x;k,\lambda)=(k/\lambda) (\lambda/x)^{(k+1)} e^{-(\lambda/x)^k}

olur.

Genellestirilmis uçsal değer dağılımı maddesine de bakınız.

Kullanış alanları

Weibull dağılımı pratikte çok kere normal dağılım yerine kullanılmaktadır. Buna neden Weibull değisebiliri değerlerinin kolay matematik işlemlerle ortaya çıkan ters alma usulu ile üretilebilmekte ve buna karşılık normal değişebilir değerleri rettmek icin tipik olarak daha karmaşık işlemler gerektiren (her normal değer için iki tane tekdüze dağılım değişebilir değeri isteyen) Box-Muller yontemi ile elde etmek gerekmektedir.

Endüstriyel mühendislik dalında fabrikasyon ve mal teslim zamanlarını temsil etmek için modellemelerde Weibull dağılımı kullanılmaktadır. Ayni bilim ve teknoloji dalında [[mühendisliği ve failure analizi için istatistiksel modellere baz olamaktadir.

Weibull dağılımı Lucasl deger teorisi ve meteorojide hava tahmin modellemesinde önemli rol oynamaktadir.

Radar sistemlerinin modelleme alanında

Weibull dağılımı çok popüler olarak rüzgar hızı dağılımını tanımlamak icin kullanılır çünkü doğasal pratik rüzgar hızı çizelgelerine teorik Weibull şekli çok uygun olmaktadır.





» Weibull Dağılımı - www.forumana.com

  Alıntı ile Cevapla
Yeni Konu aç Cevapla

Yukarıdaki Konuyu Aşağıdaki Sosyal Ağlarda Paylaşabilirsiniz.

Etiketler
dagilimi, weibull


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 
Seçenekler
Stil


Tüm Zamanlar GMT +3 Olarak Ayarlanmış. Şuanki Zaman: 09:03.

Forum Künyemiz
Uyarı

Powered by vBulletin® Version 3.8.4
Copyright ©2011 - 2019, Jelsoft Enterprises Ltd.
Content Relevant URLs by vBSEO 3.6.0
Açılış Tarihi : 05.12.2011
Kuruluş Tarihi : 20.11.2011
Hazırlayan & Tasarlayan : Forumana.com
 

Sosyal paylaşım platformu olan Forumana.com sitemizde, kullanıcılar 5651 sayılı kanunun ilgili maddesine ve TCK'nın 125. maddesine göre yaptıkları paylaşımlardan sorumludur, kullanıcı kaynaklı herhangi bir durumdan Forumana.com sitesi sorumlu değildir. Tüm hukuksal bildirimleriniz/sorunlarınız/istekleriniz ve şikayetleriniz için İletişim panelinden bizlere ulaşabilirsiniz, Forumana.com yönetimi en geç "3" iş günü içerisinde dönüş yapacaktır. Platformumuz; kişilik ve telif hakları korunumu, illegal paylaşım ve korsanla mücadele konusunda yetkililere yardımcı olmayı ilke edinmiştir.

Forum, Forumlar, Forum Sitesi, Etiket, Sitemap, Arşiv